44 research outputs found

    Suppression of Jasmonic Acid-Dependent Defense in Cotton Plant by the Mealybug Phenacoccus solenopsis

    Get PDF
    The solenopsis mealybug, Phenacoccus solenopsis, has been recently recognized as an aggressively invasive pest in China, and is now becoming a serious threat to the cotton industry in the country. Thus, it is necessary to investigate the molecular mechanisms employed by cotton for defending against P. solenopsis before the pest populations reach epidemic levels. Here, we examined the effects of exogenous jasmonic acid (JA), salicylic acid (SA), and herbivory treatments on feeding behavior and on development of female P. solenopsis. Further, we compared the volatile emissions of cotton plants upon JA, SA, and herbivory treatments, as well as the time-related changes in gossypol production and defense-related genes. Female adult P. solenopsis were repelled by leaves from JA-treated plant, but were not repelled by leaves from SA-treated plants. In contrast, females were attracted by leaves from plants pre-infested by P. solenopsis. The diverse feeding responses by P. solenopsis were due to the difference in volatile emission of plants from different treatments. Furthermore, we show that JA-treated plants slowed P. solenopsis development, but plants pre-infested by P. solenopsis accelerated its development. We also show that P. solenopsis feeding inhibited the JA-regulated gossypol production, and prevented the induction of JA-related genes. We conclude that P. solenopsis is able to prevent the activation of JA-dependent defenses associated with basal resistance to mealybugs

    Genetic instability and anti-HPV immune response as drivers of infertility associated with HPV infection

    Get PDF
    Funding Information: RFBR grant 17–54-30002, Ministry of Science and Higher Education of the Russian Federation (Agreement No. 075–15–2019-1660) to Olga Smirnova. Publisher Copyright: © 2021, The Author(s).Human papillomavirus (HPV) is a sexually transmitted infection common among men and women of reproductive age worldwide. HPV viruses are associated with epithelial lesions and cancers. HPV infections have been shown to be significantly associated with many adverse effects in reproductive function. Infection with HPVs, specifically of high-oncogenic risk types (HR HPVs), affects different stages of human reproduction, resulting in a series of adverse outcomes: 1) reduction of male fertility (male infertility), characterized by qualitative and quantitative semen alterations; 2) impairment of couple fertility with increase of blastocyst apoptosis and reduction of endometrial implantation of trophoblastic cells; 3) defects of embryos and fetal development, with increase of spontaneous abortion and spontaneous preterm birth. The actual molecular mechanism(s) by which HPV infection is involved remain unclear. HPV-associated infertility as Janus, has two faces: one reflecting anti-HPV immunity, and the other, direct pathogenic effects of HPVs, specifically, of HR HPVs on the infected/HPV-replicating cells. Adverse effects observed for HR HPVs differ depending on the genotype of infecting virus, reflecting differential response of the host immune system as well as functional differences between HPVs and their individual proteins/antigens, including their ability to induce genetic instability/DNA damage. Review summarizes HPV involvement in all reproductive stages, evaluate the adverse role(s) played by HPVs, and identifies mechanisms of viral pathogenicity, common as well as specific for each stage of the reproduction process.publishersversionPeer reviewe

    Screening for non-adherence to antihypertensive treatment as a part of the diagnostic pathway to renal denervation.

    No full text
    Renal denervation is a potential therapeutic option for resistant hypertension. A thorough clinical assessment to exclude reversible/spurious causes of resistance to antihypertensive therapy is required prior to this procedure. The extent to which non-adherence to antihypertensive treatment contributes to apparent resistance to antihypertensive therapy in patients considered for renal denervation is not known. Patients (n=34) referred for renal denervation entered the evaluation pathway that included screening for adherence to antihypertensive treatment by high-performance liquid chromatography-tandem mass spectrometry-based urine analysis. Biochemical non-adherence to antihypertensive treatment was the most common cause of non-eligibility for renal denervation-23.5% of patients were either partially or completely non-adherent to prescribed antihypertensive treatment. About 5.9% of those referred for renal denervation had admitted non-adherence prior to performing the screening test. Suboptimal pharmacological treatment of hypertension and 'white-coat effect' accounted for apparently resistant hypertension in a further 17.7 and 5.9% of patients, respectively. Taken together, these three causes of pseudo-resistant hypertension accounted for 52.9% of patients referred for renal denervation. Only 14.7% of referred patients were ultimately deemed eligible for renal denervation. Without biochemical screening for therapeutic non-adherence, the eligibility rate for renal denervation would have been 38.2%. Non-adherence to antihypertensive treatment and other forms of therapeutic pseudo-resistance are by far the most common reason of 'resistant hypertension' in patients referred for renal denervation. We suggest that inclusion of biochemical screening for non-adherence to antihypertensive treatment may be helpful in evaluation of patients with 'resistant hypertension' prior to consideration of renal denervation
    corecore